The Energy Storage Report 2024

Now available to download, covering deployments, technology, policy and finance in the energy storage market

Thermal energy storage can increase LDES deployments by 2-2.5x, says Council report

LinkedIn
Twitter
Reddit
Facebook
Email

With nearly half of global emissions coming from heat processes, clean long duration energy storage (LDES) which can store thermal energy are crucial for decarbonisation, says a new LDES Council report.

Thermal energy storage solutions can decarbonise heat applications by electrifying them, firm heat with variable energy resources and optimise heat production in industrial processes.

This article requires Premium SubscriptionBasic (FREE) Subscription

Enjoy 12 months of exclusive analysis

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Annual digital subscription to the PV Tech Power journal
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

A new report by the Long Duration Energy Storage (LDES) Council says that thermal energy storage, or TES, has the potential to expand the overall installed capacity potential of LDES by to 2-8TW by 2040, versus 1-3TW without. This equates to a cumulative investment of US$1.6-2.5 trillion, and would result in system savings of up to US$540 billion a year.

Use cases include storing and utilising electricity from renewables, storing and utilising heat generated from industrial processes or from heat-based renewable generation, as well as drawing in and storing clean energy from the market.

TES comprises a range of technologies ranging from freezing to 2,400°C storage temperature, for hours to months of duration. The report claims that solutions have an internal rate of return (IRR) of 6-28% for chemical plants, 22% for ‘off-grid greenhouse’, 0-16% for district heating peaker plants and 16% for alumina refineries.

The capex requirements for discharging equipment – i.e. power capex – of TES are expected to fall by 2040, by 15-30% for steam-based applications and 5% for air-based ones. These are based on figures provided by LDES Council members. Members that provide TES solutions include 1414 Energy, Brenmiller Energy, EnergyNest, Malta Inc and MGA Thermal.

Energy storage capex requirements are expected to fall even further, by 25-70% by 2040 depending on the type of heat.

While not a member of the Council, Polar Night Energy’s ‘sand’ battery in Finland made headlines around the world when it went online in summer this year. Read Energy-Storage.news’ coverage of that project here.

Market design changes that could incentivise more deployments include carbon pricing, variable electricity pricing and payments for flexibility provision, the LDES Council said.

The report, which you can download here, gave some business case examples of TES in action. One business case was the generation of medium-pressure steam in a chemicals plant, using an electric boiler with TES. Alongside steam generation, use cases include drying, humidification, cleaning, moisturisation, sterilisation and disinfection and process heating, and the project has a potential IRR of 28%.

Another was replacing a 250MW peaker gas boiler for district heating with a TES powered by offshore wind, which could result in a 16% IRR.

See previous articles by Energy-Storage.news on the topic of thermal energy storage here.

24 April 2024
11am PDT / 2pm EDT
This webinar explores the advantages of the metal-hydrogen technology and how it is being packaged into turnkey solutions for project integrators across the globe. We will also highlight the developing long-duration-energy-storage market and identify which technologies are ready to address the demanding needs of an evolving electrical grid.

Read Next

April 16, 2024
SSE Renewables has launched its first operative battery energy storage system (BESS) with a capacity of 50MW/100MWh. 
April 11, 2024
A Quinbrook Infrastructure Partners portfolio company will shortly begin construction on a 250MW/500MWh battery storage system in Queensland, Australia.
April 10, 2024
A compressed air energy storage (CAES) project in Hubei, China, has come online, with 300MW/1,500MWh of capacity.
April 8, 2024
The government of Estonia has signed a Memorandum of Understanding (MoU) for what would be the Eastern European country’s first pumped hydro energy storage (PHES) facility.
April 3, 2024
The European Commission has approved a €1 billion (US$1.1 billion) state aid measure for Greece to support two solar-plus-storage projects.

Most Popular

Email Newsletter