NASA invests in ‘critical mission technology’ with four proposed energy storage systems

August 12, 2014
LinkedIn
Twitter
Reddit
Facebook
Email

US space exploration agency NASA is considering proposals for four different energy storage systems, submitted by academic institutions and private companies that could power its future robotic and human missions to space.

At the end of last week, NASA announced that it had selected the technology proposals, which include lithium-sulfur (Li-S) battery-based storage systems, as part of the agency’s Space Technology Mission Directorate. Managed through the directorate’s Game Changing Development Program, each proposal could net up to US$3.25 million in funding over three years.

The US National Research Council which produces reports and advises on policy at a national level recently published ‘NASA Space Technology Roadmaps and Priorities’, which concluded that reliable energy storage and generation that could be safely used in the environments specific to NASA missions was needed.

Selected were proposals from Silicon Valley lithium-ion battery maker Amprius, the California Institute of Technology, Indiana University and the University of Maryland.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Amprius has developed and submitted to NASA silicon anode based cells for “High Specific Energy Systems”. According to Amprius’ website, the company’s backers include Google chairman Eric Schmidt and Stanford University.

The other three proposed systems are lithium sulfur battery based designs. California Institute of Technology has submitted “High Energy Density and Long-Life Li-S Batteries for Aerospace Applications”, Indiana University proposed its “Advanced High Energy Rechargeable Lithium-Sulfur Batteries”, while the University of Maryland has come up with “Garnet Electrolyte Based Safe, Lithium-sulfur Energy Storage”.

On announcing the funding, Michael Gazarik of NASA described energy storage for manned and unmanned space missions as a “critical mission technology area”. Image: NASA.
Under the programme, the initial award to each proposal under the first phase will be around US$250,000 to fund an initial testing and analysis phase. The second phase will see US$1 million of funding given over a year for engineering and hardware development while the final phase, Phase III, sees prototype hardware go into development, accompanied by funding of around US$2 million per project for 18 months.

NASA’s associate administrator for space technology, Michael Gazarik, based in Washington, said:

“New energy storage technology will be critical to our future exploration of deep space — whether missions to an asteroid, Mars or beyond. That’s why we’re investing in this critical mission technology area.”

The Advanced Research Projects Agency-Energy (ARPA-E) is working closely with NASA to develop energy storage solutions, the agency said. The following day after announcing it had selected the storage proposals, NASA also announced around US$17 million in funding would go to 23 small businesses and research institutions that “continue the development of innovative technologies that will support future agency mission needs and may also prove viable as commercial products and services”.

Read Next

November 27, 2025
The Western Australian government has launched the first stage of an Expression of Interest (EOI) process for a 50MW/500MWh vanadium flow battery energy storage system (VBESS) in Kalgoorlie.
November 24, 2025
Developer Akaysha Energy has confirmed that the 850MW Waratah Super Battery will undergo a planned balance of plant shutdown from 20 November to 2 December 2025.
November 21, 2025
In a major week for European BESS deal-making, project acquisition and financing deals have been done in the Poland, Germany, Finland, the UK and Romania for grid-scale projects totalling well over 1GW of capacity.
November 20, 2025
From the US, Maxwell Technologies is acquired for its third time, by Clarios, Fullmark Energy completes a tax credit transfer, and OATI partners with Colville Tribes on microgrid solutions.
November 12, 2025
Queensland Investment Corporation (QIC) and EDP Renewables Australia have signed an exclusivity agreement to develop the Punchs Creek Renewable Energy Project, a 1,600MWh solar-plus-storage project in Queensland’s Toowoomba region.