Although lithium-ion is currently the market leading battery technology in energy storage, this status cannot be guaranteed in perpetuity. Three leading figures from the lithium-ion battery industry give Andy Colthorpe their views how the technology can continue to prosper.
One of the planet’s most abundant elements, hydrogen has the capacity to be a game-changer in decarbonising the global energy system, writes Janice Lin, founder and president of the Green Hydrogen Coalition.
Energy storage systems were historically used for grid balancing purposes within Europe, limiting their use to such applications or to be considered as “auxiliaries” to renewable generation assets. However, as market prices evolve and new revenue streams emerge, stakeholders must discover the diverse applications that such systems can tap into, writes Naim El Chami.
Ensuring high quality levels in the manufacturing of lithium-ion batteries is critical to preventing underperformance and even safety risks. Benjamin Sternkopf, Ian Greory and David Prince of PI Berlin examine the prerequisites for finding the ‘sweet spot’ between a battery’s cost, performance and lifetime.
Our ability to generate renewable energy is scaling up fast, and solutions to integrate that energy will rely on technologies like blockchain to help keep new solutions on track. Power Ledger’s executive chairman and co-founder, Dr Jemma Green, looks at the role blockchain plays within her company’s platform to integrate and automate solar energy trading and balancing.
The optimal integration of distributed energy resources such as solar, battery storage and smart thermostats becomes an ever-more complex and pressing question. Rahul Kar, general manager and VP for New Energy at AutoGrid Systems looks at the role artificial intelligence can play in smarter energy networks.
Battery system integrators must navigate a broad array of technologies and varying market drivers when putting systems together. Andy Colthorpe speaks to Powin Energy and Sungrow about the engineering challenges involved in building lithium-ion battery storage systems at scale.
In the second of a two-part series for this journal, Jens Noack, Nataliya Roznyatovskaya, Chris Menictas and Maria Skyllas-Kazacos from CENELEST, a joint research venture between the Fraunhofer Institute for Chemical Technology and the University of New South Wales, examine the potential of vanadium redox flow batteries in the future energy system.